UCL School of Management

Research seminar

Dr Gah-Yi Ban, LBS


Gah-Yi Ban


Friday, 27 September 2019
10:00 – 11:30
Research Group
Operations and Technology

UCL School of Management is delighted to welcome Dr. Gah-Yi Ban, LBS, to host a research seminar discussing ‘Personalized Dynamic Pricing with Machine Learning: High Dimensional Features and Heterogeneous Elasticity’


We consider a seller who can dynamically adjust the price of a product at the individual customer level, by utilizing information about customers’ characteristics encoded as a d-dimensional feature vector. We assume a personalized demand model, parameters of which depend on s out of the d features. The seller initially does not know the relationship between the customer features and the product demand, but learns this through sales observations over a selling horizon of T periods. We prove that the seller’s expected regret, i.e., the revenue loss against a clairvoyant who knows the underlying demand relationship, is at least of order s√T under any admissible policy. We then design a near-optimal pricing policy for a “semi-clairvoyant” seller (who knows which s of the d features are in the demand model) that achieves an expected regret of order s√TlogT. We extend this policy to a more realistic setting where the seller does not know the true demand predictors, and show this policy has an expected regret of order s√T(log d+logT), which is also near-optimal. Finally, we test our theory on simulated data and on a data set from an online auto loan company in the United States. On both data sets, our experimentation-based pricing policy is superior to intuitive and/or widely-practiced customized pricing methods such as myopic pricing and segment-then-optimize policies. Furthermore, our policy improves upon the loan company’s historical pricing decisions by 47% in expected revenue over a six-month period. 

Open to
Last updated Wednesday, 7 August 2019